White dwarf cooling - University of Cambridge

5 downloads 1921 Views 5MB Size Report
White dwarf cooling: electron-phonon coupling and the metallization of solid helium ... 31 July 2013 ... White dwarf cooling: metallization of solid helium (I).
White dwarf cooling: electron-phonon coupling and the metallization of solid helium Bartomeu Monserrat University of Cambridge

QMC in the Apuan Alps VIII 31 July 2013

Outline

White dwarf stars overview Theoretical background Anharmonic energy Phonon expectation values Results Conclusions

B. Monserrat – QMC Apuan Alps VIII – July 2013

1 / 43

Outline

White dwarf stars overview Theoretical background Anharmonic energy Phonon expectation values Results Conclusions

B. Monserrat – QMC Apuan Alps VIII – July 2013

2 / 43

Star formation

g

I

Virial theorem: K = −1/2 Vg .

I

Energy expressions:

T

K ∝ N kB T and Vg ∝ − I

GM 2 R

Temperature increases as the star gravitationally collapses.

B. Monserrat – QMC Apuan Alps VIII – July 2013

3 / 43

Main sequence star

g

H→He

I

Thermonuclear reactions: hydrogen burning.

I

Gravitation balanced by nuclear reactions.

I

Main sequence star (e.g. the Sun).

B. Monserrat – QMC Apuan Alps VIII – July 2013

4 / 43

White dwarf formation

g

I

Burning material exhausted.

I

Gravitational contraction resumes.

I

High density leads to degenerate electron gas (DEG).

I

White dwarf star balanced by DEG.

I

Complications: mass loss (red giant), further burning cycles, . . .

DEG

B. Monserrat – QMC Apuan Alps VIII – July 2013

5 / 43

White dwarf structure

I

Degenerate core: He or C/O.

I

Atmosphere: H, He and traces of other elements.

I

Atmosphere represents 10−4 – 10−2 of the total mass.

I

Atmosphere stratification due to strong gravity.

I

Weak energy sources: crystallization, . . .

I

Energy transport: conduction, radiation and convection.

g

DEG

B. Monserrat – QMC Apuan Alps VIII – July 2013

6 / 43

White dwarf cooling 10

3

Teff (10 K)

8 6 4 2 0 0

2

4

6

8 10 12 14 16 18 20 9 Time (10 years)

B. Monserrat – QMC Apuan Alps VIII – July 2013

7 / 43

White dwarf cooling Age of the Universe

10

3

Teff (10 K)

8 6 4

Black dwarf

2 0 0

2

4

6

8 10 12 14 16 18 20 9 Time (10 years)

B. Monserrat – QMC Apuan Alps VIII – July 2013

8 / 43

White dwarf cooling: metallization of solid helium (I)

Helium

Degenerate electron gas Degenerate electron gas: isothermal Core to surface: temperature gradient

B. Monserrat – QMC Apuan Alps VIII – July 2013

9 / 43

Helium phase diagram 2

10

Metallization

He++

1

Pressure (TPa)

10

100

Solid 4He

10-1

10-2 2 10

He+

He0

103

104 Temperature (K)

B. Monserrat – QMC Apuan Alps VIII – July 2013

Fluid 4He

105

106 10 / 43

White dwarf cooling: metallization of solid helium (II) Insulating Helium Metallic Helium

γ

e− Degenerate electron gas

γ

e−

γ

e−

Degenerate electron gas: isothermal Core to surface: temperature gradient

B. Monserrat – QMC Apuan Alps VIII – July 2013

11 / 43

Metallization pressure

I

DFT: 17 TPa at zero temperature.

I

DMC and GW : 25.7 TPa at zero temperature.

I

Electron-phonon coupling: ?

B. Monserrat – QMC Apuan Alps VIII – July 2013

12 / 43

Outline

White dwarf stars overview Theoretical background Anharmonic energy Phonon expectation values Results Conclusions

B. Monserrat – QMC Apuan Alps VIII – July 2013

13 / 43

Harmonic approximation I

Vibrational Hamiltonian in {rα } (or {uα }): X 1 X 1 ˆ vib = − 1 H ∇2pα + upα Φpα;p0 β up0 β 2 mα 2 Rp ,α

I

Rp ,α;Rp0 ,β

Normal mode analysis: {upα } −→ {qks } upα;i = qks =

X 1 qks eik·Rp wks;iα N0 mα k,s 1 X √ √ mα upα;i e−ik·Rp w−ks;iα N0 R ,α,i √

p

I

Vibrational Hamiltonian in {qks }:  X  1 ∂2 1 2 2 ˆ H vib = − 2 + 2 ωks qks 2 ∂qks k,s

B. Monserrat – QMC Apuan Alps VIII – July 2013

14 / 43

Principal axes approximation to the BO energy surface

V ({qks }) = V (0)+

X k,s

Vks (qks )+

1 X X0 Vks;k0 s0 (qks , qk0 s0 )+· · · 2 0 0 k,s k ,s

I

Static lattice DFT total energy

I

DFT total energy along frozen independent phonon

I

DFT total energy along frozen coupled phonons

B. Monserrat – QMC Apuan Alps VIII – July 2013

15 / 43

Vibrational self-consistent field equations I

Phonon Schr¨odinger equation:   X 1 ∂2   − 2 + V ({qks }) Φ({qks }) = EΦ({qks }) 2 ∂qks k,s

Q

I

Ground state ansatz: Φ({qks }) =

I

Self-consistent equations:   1 ∂2 − 2 + V ks (qks ) φks (qks ) = λks φks (qks ) 2 ∂qks * + Y0 Y0 V ks (qks ) = φk0 s0 (qk0 s0 ) V ({qk00 s00 }) φk0 s0 (qk0 s0 ) k0 ,s0 k0 ,s0

k,s φks (qks )

B. Monserrat – QMC Apuan Alps VIII – July 2013

16 / 43

Vibrational self-consistent field equations (II)

I

Approximate vibrational excited states: Y S |ΦS (Q)i = |φksks (qks )i k,s

where S is a vector with elements Sks . I

Anharmonic free energy: F =−

1 X −βES ln e β S

B. Monserrat – QMC Apuan Alps VIII – July 2013

17 / 43

Diamond independent phonon term (I)

V ({qks }) = V (0)+

X

Vks (qks )+

k,s

1 X X0 Vks;k0 s0 (qks , qk0 s0 )+· · · 2 0 0 k,s k ,s

1.0

BO energy (eV)

0.8

Harmonic Anharmonic

0.6 0.4 0.2 0 -40

-20 0 20 Mode amplitude (a.u.)

40

B. Monserrat – QMC Apuan Alps VIII – July 2013

18 / 43

Mode wave function (arb. units)

Diamond independent phonon term (II) Harmonic Anharmonic

-40

-20 0 20 Mode amplitude (a.u.) B. Monserrat – QMC Apuan Alps VIII – July 2013

40

19 / 43

Diamond coupled phonons term V ({qks }) = V (0)+

X

Vks (qks )+

k,s

1 X X0 Vks;k0 s0 (qks , qk0 s0 )+· · · 2 0 0 k,s k ,s

3

3

40

40

30

2.5

30

20

2.5

20

1.5

10 q2 (a.u.)

q2 (a.u.)

0

-10

2 Energy (eV)

2 10

0

1.5

-10

1 -20

1 -20

-30

0.5

-40

-30

0.5

-40 -40

-30

-20

-10

0 10 q1 (a.u.)

20

30

40

0

-40

-30

B. Monserrat – QMC Apuan Alps VIII – July 2013

-20

-10

0 10 q1 (a.u.)

20

30

40

20 / 43

0

LiH independent phonon term (I)

V ({qks }) = V (0)+

X

Vks (qks )+

k,s

1 X X0 Vks;k0 s0 (qks , qk0 s0 )+· · · 2 0 0 k,s k ,s

0.6

BO energy (eV)

Harmonic Anharmonic 0.4

0.2

0

-60

-40

-20 0 20 40 Mode amplitude (a.u.)

60

B. Monserrat – QMC Apuan Alps VIII – July 2013

21 / 43

Mode wave function (arb. units)

LiH independent phonon term (II) Harmonic Anharmonic

-60

-40

-20 0 20 40 Mode amplitude (a.u.)

B. Monserrat – QMC Apuan Alps VIII – July 2013

60

22 / 43

LiH coupled phonons term V ({qks }) = V (0)+

X

Vks (qks )+

k,s

k,s k ,s

3.5

60

q2 (a.u.)

1.5

-20

2.5

20 Energy (eV)

2 0

3

40

2.5

20

3.5

60

3

40

q2 (a.u.)

1 X X0 Vks;k0 s0 (qks , qk0 s0 )+· · · 2 0 0

2 0 1.5

-20 1

-40

1 -40

0.5 -60 -60

-40

-20

0 q1 (a.u.)

20

40

60

0

0.5 -60 -60

-40

B. Monserrat – QMC Apuan Alps VIII – July 2013

-20

0 q1 (a.u.)

20

40

60

23 / 43

0

Anharmonic correction (meV/atom)

Anharmonic ZPE correction

7.5

Diamond 1

7

2

7

H Li

5.0

H Li Graphene Graphane

2.5

0.0 0

200 400 600 Number of normal modes B. Monserrat – QMC Apuan Alps VIII – July 2013

800

24 / 43

General phonon expectation value I

Phonon expectation value at inverse temperature β: ˆ hO(Q)i Φ,β =

1 X S S ˆ hΦ (Q)|O(Q)|Φ (Q)ie−βES Z S

I

Evaluation: I

Standard theories (Allen-Heine, Gr¨ uneisen): X 2 ˆ ˆ O(Q) = O(0) + aks qks k,s

I

Principal axes expansion: ˆ ˆ O(Q) = O(0)+

X k,s

I

ˆ ks (qks )+ 1 O 2

X X0 k,s

ˆ ks;k0 s0 (qks , qk0 s0 )+· · · O

k0 ,s0

Monte Carlo sampling B. Monserrat – QMC Apuan Alps VIII – July 2013

25 / 43

Band gap renormalization

I

Band gap problem (LDA, PBE, . . . ): underestimation of gaps.

I

Caused by the lack of a discontinuity in approximate xc-functionals with respect to particle number: correction ∆xc to band gap.

I

Approximate systematic shift in all displaced configurations.

I

Error disappears in change in band gap.

B. Monserrat – QMC Apuan Alps VIII – July 2013

26 / 43

εnk (arb. units)

Diamond thermal band gap (I)

W

Γ

B. Monserrat – QMC Apuan Alps VIII – July 2013

X

27 / 43

Diamond thermal band gap (II) 6.0 5.9 5.8 Eg (eV)

5.7 5.6

0.462 eV

Static lattice Including el-ph coupling

5.5 5.4 5.3 5.2 5.1 0

200

600 400 Temperature (K)

B. Monserrat – QMC Apuan Alps VIII – July 2013

800

1000

28 / 43

Diamond thermal band gap (III)

Eg (eV)

5.4

5.3

5.2

Theory Experiment

5.1 0

200

600 400 Temperature (K)

800

1000

Experimental data from Proc. R. Soc. London, Ser. A 277, 312 (1964)

B. Monserrat – QMC Apuan Alps VIII – July 2013

29 / 43

Thermal expansion (I) I

Gibbs free energy: dG = dFel + dFvib − Ω

X

ext σij dij

i,j I

Vibrational stress: dFvib = −Ω

X

vib σij dij

i,j I

Effective stress: dG = dFel − Ω

X

eff σij dij

i,j eff = σ ext + σ vib . where σij ij ij

B. Monserrat – QMC Apuan Alps VIII – July 2013

30 / 43

Thermal expansion (II) I

Potential part of vibrational stress tensor: vib,V el σij = hΦ(Q)|σij |Φ(Q)i

I

Kinetic part of vibrational stress tensor: + * X 1 vib,T σij =− Φ mα u˙ pα;i u˙ pα;j Φ Ω Rp ,α

I

Total vibrational stress tensor: vib,V vib,T vib σij = σij + σij

B. Monserrat – QMC Apuan Alps VIII – July 2013

31 / 43

LiH and LiD thermal expansion coefficient 7

H Li 7

7

D Li

6

H Li (exp.)

5

D Li (exp.)

7 7

Lattice parameter (a.u.)

-5

-1

α (10 K )

8

4 3 2 1 0 0

200

8.1 8.0 7.9 7.8 7.7 0

200 400 600 Temperature (K)

400 Temperature (K)

600

800

800

Experimental data from J. Phys. C 15, 6321 (1982)

B. Monserrat – QMC Apuan Alps VIII – July 2013

32 / 43

Outline

White dwarf stars overview Theoretical background Anharmonic energy Phonon expectation values Results Conclusions

B. Monserrat – QMC Apuan Alps VIII – July 2013

33 / 43

Enthalpy difference (eV/atom)

Solid helium structural phase diagram 0.5

fcc

0.4 bcc

0.3 0.2

dhcp

0.1

hcp-dhcp continuum

0.0 -0.1

hcp 5

10 15 20 Pressure (TPa) B. Monserrat – QMC Apuan Alps VIII – July 2013

25

30

34 / 43

Electron-phonon correction (eV)

Solid helium electron-phonon gap correction (I) 1.0 0.5 0.0 T=0K T = 2500 K T = 5000 K T = 7500 K T = 10000 K

-0.5 -1.0 0

5

10 15 Pressure (TPa)

B. Monserrat – QMC Apuan Alps VIII – July 2013

20

25

35 / 43

Solid helium electron-phonon gap correction (II)

10 TPa to 25 TPa

B. Monserrat – QMC Apuan Alps VIII – July 2013

36 / 43

Solid helium equilibrium density 1.00 0.98

ρ/ρstatic

0.96 0.94 0.92

T=0K T = 2500 K T = 7500 K T = 5000 K T = 10000 K

0.90 0.88 0.86 0

5

10 15 Pressure (TPa)

B. Monserrat – QMC Apuan Alps VIII – July 2013

20

25

37 / 43

Solid helium metallization pressure DMC and GW el-ph (T=0K) el-ph (T=5000K) kBT (T=5000K)

2

Eg (eV)

1 0 -1 -2 24

25

26

27 28 29 Pressure (TPa)

30

31

DMC and GW from PRL 101, 106407 (2008)

B. Monserrat – QMC Apuan Alps VIII – July 2013

38 / 43

Helium phase diagram revisited 31 Metallic solid

30

Pressure (TPa)

29 28 Fluid 27 Insulating solid 26 25 24

0

2000

4000 6000 Temperature (K)

8000

B. Monserrat – QMC Apuan Alps VIII – July 2013

10000 39 / 43

White dwarf cooling revisited: metallization of solid helium

γ-transport e− -transport DEG Higher metallization pressure

Thinner electron-transport layer

B. Monserrat – QMC Apuan Alps VIII – July 2013

40 / 43

Outline

White dwarf stars overview Theoretical background Anharmonic energy Phonon expectation values Results Conclusions

B. Monserrat – QMC Apuan Alps VIII – July 2013

41 / 43

Conclusions

I

Theory for anharmonic vibrational energy of solids.

I

General framework for phonon-dependent expectation values.

I

Metallization of solid helium.

I

White dwarf energy transport and cooling.

B. Monserrat – QMC Apuan Alps VIII – July 2013

42 / 43

I

Acknowledgements: I I I I I I

I

Prof. Richard J. Needs Dr Neil D. Drummond Dr Gareth J. Conduit Prof. Chris J. Pickard TCM group EPSRC

References: I

I

B. Monserrat, N.D. Drummond, R.J. Needs Physical Review B 87, 144302 (2013) B. Monserrat, N.D. Drummond, C.J. Pickard, R.J. Needs Helium paper, in preparation (2013)

B. Monserrat – QMC Apuan Alps VIII – July 2013

43 / 43