Wind Turbine Gearbox Fault Diagnosis Based on

1 downloads 0 Views 4MB Size Report
Jan 26, 2017 - Huanguo Chen, Pei Chen, Wenhua Chen *, Chuanyu Wu, Jianmin Li ...... Liang, X.H.; Zuo, M.J.; Hoseini, M.R. Vibration signal modeling of a ...
applied sciences Article

Wind Turbine Gearbox Fault Diagnosis Based on Improved EEMD and Hilbert Square Demodulation Huanguo Chen, Pei Chen, Wenhua Chen *, Chuanyu Wu, Jianmin Li and Jianwei Wu Faculty of Mechanical Engineering & Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China; [email protected] (H.C.); [email protected] (P.C.); [email protected] (C.W.); [email protected] (J.L.); [email protected] (J.W.) * Correspondence: [email protected]; Tel.: +86-186-5883-1322 Academic Editor: Gangbing Song Received: 2 November 2016; Accepted: 6 January 2017; Published: 26 January 2017

Abstract: The rapid expansion of wind farms has accelerated research into improving the reliability of wind turbines to reduce operational and maintenance costs. A critical component in wind turbine drive-trains is the gearbox, which is prone to different types of failures due to long-term operation under tough environments, variable speeds and alternating loads. To detect gearbox fault early, a method is proposed for an effective fault diagnosis by using improved ensemble empirical mode decomposition (EEMD) and Hilbert square demodulation (HSD). The method was verified numerically by implementing the scheme on the vibration signals measured from bearing and gear test rigs. In the implementation process, the following steps were identified as being important: (1) in order to increase the accuracy of EEMD, a criterion of selecting the proper resampling frequency for raw vibration signals was developed; (2) to select the fault related intrinsic mode function (IMF) that had the biggest kurtosis index value, the resampled signal was decomposed into a series of IMFs; (3) the selected IMF was demodulated by means of HSD, and fault feature information could finally be obtained. The experimental results demonstrate the merit of the proposed method in gearbox fault diagnosis. Keywords: wind turbine gearbox; fault diagnosis; EEMD; Hilbert square demodulation

1. Introduction In order to harvest wind energy more efficiently, wind turbines are becoming larger and more complex. As a result, the fault rates of wind turbines are increasing, which impacts enormously on the cost of wind energy [1]. The gearbox is the major component of a wind turbine drive train and is costly and vulnerable to failure, inevitably causing the unit to stop working [2]. Accordingly, investigation into fault diagnosis for the wind turbine gearbox is becoming a popular field of research. Typically, gear tooth damages and bearing faults are the most frequent faults. Since vibration signals carry much information related to the system’s dynamical characteristics, vibration analysis is a common approach for wind turbine gearbox fault diagnosis, especially with respect to the rotation parts [3,4]. However, the wind turbine working environment is strict and poor, which makes the vibration signals non-linear and non-stationary. Although traditional time domain and frequency analysis techniques, such as energy analysis, kurtosis, crest factor and spectrum analysis, have been widely used in fault diagnosis, these methods have only been effective in a stationary signal process. When it comes to non-stationary signal analyzing, the diagnostic performance has usually been unsatisfactory. For this reason, many time-frequency analysis techniques, such as wavelet packet transform (WPT) [5,6], empirical model decomposition (EMD) [7–9] and independent component analysis (ICA) [10], have been applied to deal with the non-linear and non-stationary characteristics exhibited in the vibration signals. Wang et al. integrated EEMD and ICA for gearbox bearing fault diagnosis [11]. Appl. Sci. 2017, 7, 128; doi:10.3390/app7020128

www.mdpi.com/journal/applsci

Appl. Sci. 2017, 7, 128

2 of 15

Law et al. (2000) proposed a method based on wavelet packet decomposition and Hilbert–Huang transform (WPD-HHT) and successfully applied it to spindle bearings condition monitoring [12]. He et al. (2007) used ICA to detect signal transients caused by localized gear damage [13]. Amirat et al. (2013) developed an EEMD-based wind turbine bearing failure detecting method using the generator stator current homopolar component [14]. Although those techniques made some progress into fault diagnosis, they had their own disadvantages. WPT could not process signals self-adaptively and needed a massive amount of data to ensure accurate results. EMD, a self-adaptive signal processing method, could decompose the non-stationary signal into several intrinsic mode functions (IMFs), which were almost orthogonal. However, mode mixing was a huge shortcoming, which restricted the application of EMD in many engineering situations. ICA extracted the transient feature without the need for prior information; however, this algorithm required redundant information measured from multiple sensors. Advanced signal processing techniques needs to be developed for this challenging task. EEMD, an improvement of EMD, was presented by Wu and Huang (2009) to overcome mode mixing [15]. Not only did EEMD have the virtue of self-adaptability, but it also eliminated mode mixing by adding noise to the original signal. It had an absolute advantage in dealing with non-stationary and nonlinear signals. However, the performance of EEMD was also affected by parameters, such as the amplitude of added noise and the number of ensemble trials. Several efforts have been made to explore choosing proper values of these parameters to evaluate the performance of EEMD. Zhang et al. (2010) investigated the effect of the above-mentioned parameters pertinent to EEMD and improved it by replacing white noise with a finite bandwidth noise [16]. Both Stevenson et al. (2005) and Ring investigated the effect of sampling frequency on EMD and proposed a sampling limit [17,18]. However, the factor of added noise made the effect of sampling frequency on EEMD different from EMD. In this paper, the effect of sampling frequency on EEMD is quantitatively analyzed, and a criterion is proposed on how to select a resampling frequency according to the analysis result. By selecting a proper resampling frequency, the accuracy of EEMD has been further increased. The vibration data were decomposed into several IMFs by means of improved EEMD. Then, the fault-related signal was extracted by selecting the IMF with the largest kurtosis [11,19]. After fault-related signal extraction, fault information should normally be identified to provide guidance for maintenance. However, in the diagnosis of a gearbox, the amplitude modulation occurs in a measured signal, which means the fault information cannot be obtained by spectrum analysis directly. The phenomenon of amplitude modulation occurs because a high-frequency carrier signal is varied by a low-frequency modulating signal. The modulating signal results from the impacts caused by defects of a bearing or gear impulses appearing every time the tooth or rolling element crosses the defected area, which leads to amplitude modulation [20,21]. To deal with this phenomenon, Hilbert square demodulation (HSD) techniques are introduced. HSD can derive the low-frequency modulating signal from the modulated signal. Lastly, spectrum analysis is applied on the demodulated signal, and fault-related information is obtained. In this paper, a novel hybrid method based on EEMD and HSD is presented for wind turbine gearbox fault diagnosis. The paper is organized as follows. The review of EEMD and Hilbert square demodulation is presented in Section 2. The proposed method for gearbox fault diagnosis is discussed in Section 3. The experimental and practical validations are presented in Section 4. A discussion and a conclusion are given in Section 5. 2. Review of Ensemble Empirical Mode Decomposition and Hilbert Square Demodulation 2.1. Ensemble Empirical Mode Decomposition EEMD is an adaptive data-driven signal processing method, which substantially improves on EMD in overcoming the problem of mode mixing. The procedures of EEMD are as follows:

Appl. Sci. 2017, 7, 128

1.

3 of 15

Given that x (t) is an original signal, add random white noise signal randn j (t) to x (t): x j (t) = x (t) + randn j (t) j = 1, 2, . . . , M

(1)

where x j (t) is the noise-added signal and M is the number of trials. 2.

Decompose x j (t) into a series of IMFs cij (t) utilizing EMD as follows: N

x j (t) =

∑ cij (t) + r Nj (t)

(2)

i =1

where cij (t) stands for the IMF obtained each trial, r Nj (t) denotes the residue of the j-th trial and Nj is the IMFs number of the j-th trial. 3. 4.

If j < M, repeat Steps 1 and 2, and add different random white noise signals each time. Since the noise series in each decomposition step is statistically different and low correlation exists among the various series, the noise will be canceled out in the ensemble means, provided that the sufficient number of steps has been taken. The ensemble means of the corresponding IMFs can be obtained as the final IMFs: ! M

ci ( t ) =

∑ cij (t)

/M

(3)

j =1

5.

where i = 1, 2, 3, ..., I and I = min( N1 , N2 , . . . , NM ). ci (t) is the ensemble mean of corresponding IMF of the decomposition.

2.2. Hilbert Square Demodulation Once a localized defect emerges in a bearing or gear, impulses occur every time the tooth or rolling element crosses the defective area; thus, the amplitude modulation occurs in measured signals. HSD, a type of non-stationary signal processing technique based on Hilbert transform (HT), has been investigated for feature extraction of the amplitude modulation signal [22]. The following is the basic principle of HSD. The reason for the phenomenon of amplitude modulation is that a high-frequency carrier signal is varied by a low-frequency modulating signal. Thus, the modulated signal could be the product of the modulating signal with the carrier signal. The modulating signal results from the impacts caused by defects of a bearing or gear, whereas the carrier signal is a combination of the resonance frequencies of the bearing. Therefore, the mathematical model of modulated signal can be described as: x ( t ) = s( t ) f ( t ) where f (t) is the high-frequency carrier signal and s(t) is the low-frequency modulating signal. Given: Z (t) = x2 (t) + H 2 [ x (t)]

(4)

(5)

where H [ x (t)] is the Hilbert transform of x (t). According to the Bedrosian product theorem [23], H [ x (t)] can be written: H [ x (t)] = H [s(t) f (t)] = s(t) H [ f (t)]

(6)

n o Z (t) = s2 (t) f 2 (t) + H 2 [ f (t)]

(7)

Thus, Z (t) can be expressed as:

Appl. Sci. 2017, 7, 128  Appl. Sci. 2017, 7, 128  

44 of 15  of 15

f  t   a cos  ω t  Generally, the high-frequency carrier signal f 1(t) is a 1harmonic signal:

(8)

so the Hilbert transform of  f (t )   can be written as follows:  f (t) = a1 cos(ω1 t) (8) H  f  t    a1 sin  ω1t  (9) so the Hilbert transform of f (t) can be written as follows: The second term of Equation (7) on the right‐hand side can be transformed as follows:  H [ f (t)] = a1 sin(ω1 t) (9) f 2  t   H 2  f  t    a12 cos 2 (ω1t )  a12 sin 2 (ω1t )  a12 (10) The second term of Equation (7) on the right-hand side can be transformed as follows: so  Z  t    finally becomes:  f 2 (t) + H 2 [ f (t)] = a1 2 cos2 (ω1 t) + a1 2 sin2 (ω1 t) = a1 2 (10) Z  t   a12 s2  t    (11) so Z (t) finally becomes: It is clear that only the low‐frequency modulating signal is left in Equation (11), so we can get  Z ( t ) = a1 2 s2 ( t ) (11) the fault characteristic frequency by means of spectrum analysis.  It is clear that only the low-frequency modulating signal is left in Equation (11), so we can get the fault characteristic frequency by means of spectrum analysis. 3. The Proposed Method  3. The Proposed Method 3.1. Criterion of Resampling Frequency Selection  3.1. Criterion of Resampling Frequency Selection To  examine  the  effect  of  sampling  frequency,  a  simulated  signal  with  transient  impulse  was  constructed as shown in Equation (12). The reason for using this kind of simulated signal was that  To examine the effect of sampling frequency, a simulated signal with transient impulse was impulses  would  appear  in  the  acceleration  signals  when  gear  tooth  damage  or  a  bearing  fault  constructed as shown in Equation (12). The reason for using this kind of simulated signal was that occurred in the gearbox of a wind turbine. The simulated signal, its spectrum and components, are  impulses would appear in the acceleration signals when gear tooth damage or a bearing fault occurred shown in Figure 1.  in the gearbox of a wind turbine. The simulated signal, its spectrum and components, are shown in Figure 1. x1  t   e 400 t1 sin  2π800t  , t1  mod  t ,1 / 33  x1 (t) = e−400t1 sin(2π800t), t1 = mod(t, 1/33) x2  t   sin  2π180t  x2 (t) = sin(2π180t)  sinsin(2π50t  2π50)t  (12) (12) x3 x(t3 ) t= 0.16random(n,  length  n1,1), n, =nlength x4 x(t4 ) t= 0.16random (t) t  x (xt) t= x1x(t)t +xx2 (tt)+  xx3(tt)+xx4t(t) 1

2

3

4

  Figure 1. Cont.

Appl. Sci. 2017, 7, 128

5 of 15

Appl. Sci. 2017, 7, 128   

5 of 15 

1

x (t)

2 0 0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

2

x (t)

2 0 -2 0 2

3

x (t)

Amplitued(V)

-2 0

0 -2 0

4

x (t)

0.2 0 -0.2 0

time (s) (c)

 

Figure  1.  Simulated  signal  and  its  components.  (a)  Waveform  of  the  simulated  signal;  (b)  its 

Figure 1. Simulated signal and its components. (a) Waveform of the simulated signal; (b) its spectrum; spectrum; (c) source components of the simulated signal.  (c) source components of the simulated signal.

To facilitate quantitative evaluation, three quantities were utilized to analyze the performance  of the EEMD. These were the successive IMF orthogonality (SIO), the IMF coherence (IC) and the  To facilitate quantitative evaluation, three quantities were utilized to analyze the performance of theresidual energy (RE). The last two measures were only utilized when the number of components in  EEMD. These were the successive IMF orthogonality (SIO), the IMF coherence (IC) and the the decomposition was known. The SIO was a measure equivalent to that stated in [17], but was only  residual energy (RE). The last two measures were only utilized when the number of components in implemented on consecutive IMFs. This measure was defined as:  the decomposition was known. The SIO was a measure equivalent to that stated in [17], but was only I 1 1 implemented on consecutive IMFs. This measure was defined as: SIO   i 1

I −1

N

 IMF  n IMF  n i

i 1

(13)

1

where  I   was the number of IMFs,  the length of signal and  SIO =N  ∑ IMFi (n)IMFi+1n(n  the discrete time.  (13) ) N∑ The IC was the measure of correlation between the valid or expected number of components  i =1 (ENC)  of  the  decomposition.  This  measured  the  ability  of  the  EMD  to  decompose  the  signal  into  wherephysically meaningful components and was defined as:  I was the number of IMFs, N the length of signal and n the discrete time.

The IC was the measure of correlation between the valid or expected number of components 1 ENC IC  (IMFi  nof (n))EMD to decompose the signal corability (ENC) of the decomposition. This measured the (14) into  ,sthe  i ENC i physically meaningful components and was defined as: where  si  n    was the source component of the raw signal corresponding to  IMFi  n  .  ENC

1 The RE was the energy in the IMFs that were outside the expected number of components. This  IC = (14) cor (IMFi (n), si (n)) ENC ∑ was another measure of the interpretability of EEMD and was defined as:  i 1



n  the RE of sraw IMF where si (n) was the source component corresponding to IMFi (n).  n  signal (15)  i    N  i n1  The RE was the energy in the IMFs that were outside the expected number of components. This where  smeasure was another of the interpretability of EEMD and was defined as:  n    was the signal under analysis.  2

ENC N

2

According  to  the  Nyquist  criteria,  the  sampling  frequency  ! must  be  more  than  twice  the  ENC N maximum  frequency  component  of  1 the signal;  frequency  of  the  simulated  2 therefore,  the  sampling  2 RE = s(n) − ∑ ∑ IMFi (n) (15) N signal varied from 1650 Hz to 14,100 Hz by steps of 50 Hz. As shown in Figure 2, these performance  i n =1 measure results present a periodic variation trend with the increase of sampling frequency. As the  sampling  frequency  was  about  2400  Hz,  4800  Hz  and  9200  Hz,  which  corresponded  to  wherevalue  s(n) of  was the signal under analysis. 3‐times, 6‐times and 12‐times the maximum frequency of the simulated signal respectively, SIO and  According to the Nyquist criteria, the sampling frequency must be more than twice the maximum RE became the local minimum value, while IC became the local maximum value. When SIO and RE  frequency component of the signal; therefore, the sampling frequency of the simulated signal varied minimum  value,  decomposition  results  had  a  good  orthogonality  and  maintained  the  from take  1650 the  Hz to 14,100 Hz by steps of 50 Hz. As shown in Figure 2, these performance measure results integrity of the information of the raw signal. When IC take the maximum value, the decomposition  present a periodic variation trend with the increase of sampling frequency. As the value of sampling result  was  physically  meaningful,  which  meant  the  EEMD  decomposition  results  were  relatively  frequency was about 4800 9200 Hz, integrity,  which corresponded to efficiency  3-times, 6-times satisfactory.  From 2400 the Hz, view  of  Hz the and information  accuracy  and  of  the  and 12-times the maximum frequency of the simulated signal respectively, SIO and RE became decomposition  results,  the  resampling  frequency  should  be  selected  as  about  12‐times  in the the local minimum value, while IC became the local maximum value. When SIO and RE take the minimum maximum frequency of a vibration signal. 

value, decomposition results had a good orthogonality and maintained the integrity of the information of the raw signal. When IC take the maximum value, the decomposition result was physically meaningful, which meant the EEMD decomposition results were relatively satisfactory. From the

Appl. Sci. 2017, 7, 128

6 of 15

view of the information integrity, accuracy and efficiency of the decomposition results, the resampling frequency should be selected as about 12-times in the maximum frequency of a vibration 6 of 15  signal. Appl. Sci. 2017, 7, 128    Appl. Sci. 2017, 7, 128   

6 of 15 

  Figure 2. The effect of sampling on ensemble empirical mode decomposition (EEMD) performance.  Figure 2. The effect of sampling on ensemble empirical mode decomposition (EEMD) performance.   ISO, successive IMF orthogonality; RE, residual energy; IC, IMF coherence. 

ISO, successive IMF orthogonality; RE, residual energy; IC, IMF coherence. Figure 2. The effect of sampling on ensemble empirical mode decomposition (EEMD) performance. 

IMF7 IMF8 IMF6 IMF7 IMF5 IMF6 IMF4 IMF5IMF3 IMF4IMF2 IMF3IMF1 IMF2 IMF1

The  decomposition  results  of  the  simulated  signal  with  different  sampling  frequencies  of    ISO, successive IMF orthogonality; RE, residual energy; IC, IMF coherence.  9450 Hz and 12,100 Hz are illustrated in Figure 3.  The decomposition results of the simulated signal with different sampling frequencies of 9450 Hz The  decomposition  results  of  the  simulated  signal  with  different  sampling  frequencies  of    0.5 and 12,100 Hz are illustrated in Figure 3. 0 9450 Hz and 12,100 Hz are illustrated in Figure 3. 

IMF8 IMF7 IMF8 IMF8 IMF6 IMF7 IMF5 IMF6 IMF4 IMF5IMF3 IMF4IMF2 IMF3 IMF1 IMF2 IMF1

-0.5 0 1 0.50 0-1 -0.5 0 0.5 0 10 0 -0.5 -1 0 2 0 0.50 0-2 -0.5 0 1 0 20 0-1 -2 0 0.5 0 10 0 -0.5 -1 0 0.2 0 0.50 0 -0.2 -0.5 0 0.05 0 0.20 0 -0.05 -0.2 0 0 0.05 0 0.5 -0.05 00 -0.5 0 0.5 0.50 0 -0.5 -0.5 0 0 0.5 0.50 0 -0.5 -0.5 0 0 1 0.50 0-1 -0.5 0 0 1 10 0-1 -1 0 0 1 10 0-1 -1 0 0 0.2 10 0 -0.2 -1 0 0 0.1 0.20 0 -0.1 -0.2 0 0 0.1 0 -0.1 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.05 0.05

0.1 0.1

0.15 0.15

0.2 0.2

0.25 0.25

0.3 0.3

0.35 0.35

0.4 0.4

0.45 0.45

0.5 0.5

0.05 0.05

0.1 0.1

0.15 0.15

0.2 0.2

0.25 0.25

0.3 0.3

0.35 0.35

0.4 0.4

0.45 0.45

0.5 0.5

0.05 0.05

0.1 0.1

0.15 0.15

0.2 0.2

0.25 0.25

0.3 0.3

0.35 0.35

0.4 0.4

0.45 0.45

0.5 0.5

0.05 0.05

0.1 0.1

0.15 0.15

0.2 0.2

0.25 0.25

0.3 0.3

0.35 0.35

0.4 0.4

0.45 0.45

0.5 0.5

0.05 0.05

0.1 0.1

0.15 0.15

0.2 0.2

0.25 0.25

0.3 0.3

0.35 0.35

0.4 0.4

0.45 0.45

0.5 0.5

0.05 0.05

0.1 0.1

0.15 0.15

0.2 0.2

0.25 0.25

0.3 0.3

0.35 0.35

0.4 0.4

0.45 0.45

0.5 0.5

0.05 0.05

0.1 0.1

0.15 0.15

0.2 0.2

0.25 0.25

0.3 0.3

0.35 0.35

0.4 0.4

0.45 0.45

0.5 0.5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.05

0.1

0.15

0.2

(a) 0.25

0.3

0.35

0.4

0.45

0.5

0.05 0.05

0.1 0.1

0.15 0.15

0.2 0.2

0.25 0.25

0.3 0.3

0.35 0.35

0.4 0.4

0.45 0.45

0.5 0.5

0.05 0.05

0.1 0.1

0.15 0.15

0.2 0.2

0.25 0.25

0.3 0.3

0.35 0.35

0.4 0.4

0.45 0.45

0.5 0.5

0.05 0.05

0.1 0.1

0.15 0.15

0.2 0.2

0.25 0.25

0.3 0.3

0.35 0.35

0.4 0.4

0.45 0.45

0.5 0.5

0.05 0.05

0.1 0.1

0.15 0.15

0.2 0.2

0.25 0.25

0.3 0.3

0.35 0.35

0.4 0.4

0.45 0.45

0.5 0.5

0.05 0.05

0.1 0.1

0.15 0.15

0.2 0.2

0.25 0.25

0.3 0.3

0.35 0.35

0.4 0.4

0.45 0.45

0.5 0.5

0.05 0.05

0.1 0.1

0.15 0.15

0.2 0.2

0.25 0.25

0.3 0.3

0.35 0.35

0.4 0.4

0.45 0.45

0.5 0.5

0.05 0.05

0.1 0.1

0.15 0.15

0.2 0.2

0.25 0.25

0.3 0.3

0.35 0.35

0.4 0.4

0.45 0.45

0.5 0.5

(a) 

(b) 

 

 

 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5   Figure 3. EEMD decomposition result with different sampling frequencies. (a) Decomposition result  (b)  of EEMD with a sampling frequency of 9450 Hz; (b) decomposition result of EEMD with a sampling  frequency of 14,100 Hz.  Figure 3. EEMD decomposition result with different sampling frequencies. (a) Decomposition result 

Figure 3. EEMD decomposition result with different sampling frequencies. (a) Decomposition result of EEMD with a sampling frequency of 9450 Hz; (b) decomposition result of EEMD with a sampling  of EEMD with a sampling frequency of 9450 Hz; (b) decomposition result of EEMD with a sampling frequency of 14,100 Hz.  frequency of 14,100 Hz.

Appl. Sci. 2017, 7, 128

7 of 15

As shown in Figure 3a, IMF2, IMF4 and IMF5 corresponded to x1 (t), x2 (t) and x3 (t), respectively. However, there were great deviations between IMF4 and x2 (t) in Figure 3b. By comparing the two decomposition results, we saw that a higher sampling frequency did not necessarily provide a better decomposition result, affirming the value of the criterion of resampling frequency selection. 3.2. Improved EEMD As mentioned above, the decomposition result of EEMD was directly affected by the sampling frequency. Too high of a sampling frequency did little to help increase the accuracy. On the contrary, it decreased the computational efficiency. Therefore, a proper resampling frequency should be selected according to the frequency characteristic of the vibration signal. In this paper, we show how EEMD was improved by replacing the raw vibration signal with a resample signal. The procedures of the improved EEMD are as follows: 1. 2.

In order to ascertain the frequency components of the vibration signal, Fourier transform was first performed to obtain its frequency spectrum. Twelve-times the maximum frequency was subtracted from the sampling frequency: f e = f s − f r = f s − 12 × f max

(16)

where f s was the sampling frequency of vibration, f r was the resampling frequency calculated by the resampling frequency criterion, f max was the maximum frequency of the vibration signal and f e was the frequency to determine whether or not to execute the resample algorithm.

3.

If f e ≥ f max , we resampled the raw signal with the resampling frequency f r and output the resample signal; otherwise, we output the raw signal directly. Perform EEMD on the signal obtained in Step 2.

3.3. The Proposed Method Typical wind turbine systems have a complex structure and combine many different components. Therefore, the vibration signal measured from wind turbine gearboxes is characteristically nonlinear and non-stationary. The useful fault feature in the vibration is very weak and dominated by strong gear meshing frequencies. The low signal to noise ratio (SNR) and transient nature pose significant difficulties and challenges to fault diagnosis of wind turbine gearboxes. Moreover, gear tooth damage leads to a reduction in gear tooth stiffness intermittently throughout the rotation of the gear. Changes due to the gear damage appear in the vibration spectrum as amplitude modulation. To overcome the above limitation, a fault diagnosis method based on improved EEMD and HSD has been proposed. Firstly, the frequency components of the raw vibration signal were calculated to determine whether a resample was needed. Secondly, the raw vibration signal or resampled signal were decomposed into a series of IMFs using EEMD. Then, the fault-related signal, which had the highest kurtosis value, was selected and processed by HSD. Finally, spectrum analysis was applied on the demodulation signal and a satisfactory extraction result was obtained. The complete process of the proposed approach is shown in Figure 4, which includes the following steps: 1 2

Spectrum analysis to extract the distributions of the frequencies of the vibration signal, using the resampling frequency criterion to calculate the resampling frequency value f r . Raw vibration signal resample. Subtract the resampling frequency from the sampling frequency: fe = fs − fr

(17)

If f e ≥ f max , resample the raw vibration signal with resampling frequency f r , and output the resampled signal; otherwise, output the raw vibration signal directly.

Appl. Sci. 2017, 7, 128    Appl. Sci. 2017, 7, 128

3

3  4 4  5 5  6 6 

8 of 15  8 of 15

If  fe  fmax , resample the raw vibration signal with resampling frequency  fr , and output the  The resampled signal decomposes by means of EEMD. Use EEMD to decompose the vibration resampled signal; otherwise, output the raw vibration signal directly.  signal obtained in Step 2 into a set of IMFs. The resampled signal decomposes by means of EEMD. Use EEMD to decompose the vibration  Sensitive IMF selection with the biggest kurtosis index value. signal obtained in Step 2 into a set of IMFs.  Sensitive IMF selection with the biggest kurtosis index value.  Feature information extraction from sensitive IMF by HSD. Use HSD to demodulate sensitive Feature information extraction from sensitive IMF by HSD. Use HSD to demodulate sensitive  IMF to extract feature information from the demodulated signal. IMF to extract feature information from the demodulated signal.  Fault type identified by means of spectrum analysis. Fault type identified by means of spectrum analysis. 

  Figure 4. The flow chart of the proposed method. HSD, Hilbert square demodulation.  Figure 4. The flow chart of the proposed method. HSD, Hilbert square demodulation.

4. The Proposed Method for Gearbox Fault Diagnosis of a Wind Turbine  4. The Proposed Method for Gearbox Fault Diagnosis of a Wind Turbine Two  different  experimental  signals  were  used  to  verify  the  performance  of  the  proposed  Two different experimental signals were used to verify the performance of the proposed method. method.  The  results  demonstrate  its  effectiveness  and  robustness  for  wind  turbine  gear  box    The results demonstrate its effectiveness and robustness for wind turbine gear box fault diagnosis. fault diagnosis.  4.1. Bearing Experimental Evaluation 4.1. Bearing Experimental Evaluation  An experimental study on the fault diagnosis of a rolling bearing was firstly employed to show how An experimental study on the fault diagnosis of a rolling bearing was firstly employed to show  the proposed method worked and to validate its effectiveness and suitability. The experimental how the proposed method worked and to validate its effectiveness and suitability. The experimental  dataset by the Case Western Reserve University (CWRU) Bearing Data Center [24] has become a dataset  the  Case  Reserve  University  Bearing  Data  was Center  [24]  has  become  a  standardby  reference inWestern  the bearing diagnostics field.(CWRU)  The proposed method applied to the CWRU standard reference in the bearing diagnostics field. The proposed method was applied to the CWRU  dataset. The basic layout of the test rig is shown in Figure 5. It consisted of a 2-hp motor (left), a torque shown  in  Figure  5.  It  consisted  of  a Two 2‐hp  motor  (left),  dataset.  The  basic  layout  of  the  test (right) rig  is  and transducer (center), a dynamometer control electronics (not shown). bearings were   a  torque  transducer  (center),  a  dynamometer  (right)  and  control  electronics  (not  shown).  Two  installed in the motor-driven mechanical system, one at the drive end of the motor and the other at bearings were installed in the motor‐driven mechanical system, one at the drive end of the motor  the fan end. In both bearings, three types of faults (outer race, inner race and ball faults) and various and the other at the fan end. In both bearings, three types of faults (outer race, inner race and ball  levels of fault severity (7–28 mils) were introduced using electro-discharge machining. Each bearing faults)  and under various  levels  of  fault  severity  mils)  rotational were  introduced  using  electro‐discharge  was tested four different loads, 0–3 hp.(7–28  The motor speed was varied between 1730 machining. Each bearing was tested under four different loads, 0–3 hp. The motor rotational speed  and 1797 RPM depending on the load. Data was collected at 12,000 samples per second and at 48,000 was  varied  between  1730  and  1797  RPM  depending  on  the  load.  Data  was  collected  at  12,000 

Appl. Sci. 2017, 7, 128  Appl. Sci. 2017, 7, 128  

99 of 15  of 15

samples per second and at 48,000 samples per second for drive end bearing experiments. All fan end  samples second drive end bearing experiments. All fanA  end bearing datadescription  were collected at bearing per data  were  for collected  at  12,000  samples  per  second.  more  detailed  of  the  12,000 samples setup  per second. A more detailedinvolved  description of be  the found  experimental the apparatus experimental  and  the  apparatus  can  at  the setup Case and Western  Reserve  involved can be found at the Case Western Reserve University’s website [24]. University’s website [24]. 

  Figure 5. Bearing test rig.  Figure 5. Bearing test rig.

In  this  study,  we  employed  the  drive  end  bearing  data  collected  at  1719  RPM  ( f  28.5 Hz )  In this study, we employed the drive end bearing data collected at 1719 RPM ( f r = 28.5r Hz) using   was 48 kHz. The fault was seeded at the outer  using an accelerometer. The sampling frequency  s an accelerometer. The sampling frequency f s was 48fkHz. The fault was seeded at the outer race with with  a  21  mils  fault  diameter.  Fault  characteristic  frequency  was ofthe  the  rotating  arace  21 mils fault diameter. Fault characteristic frequency was the multiple themultiple  rotating of  frequency, the frequency, the coefficient of the driven end bearing outer ring and the coefficient of the drive end  coefficient of the driven end bearing outer ring and the coefficient of the drive end bearing and is listed bearing and is listed in Table 1 [24]. Therefore, the fault characteristic frequency could be obtained  in Table 1 [24]. Therefore, the fault characteristic frequency could be obtained by Equation (18): by Equation (18):  1719 f ep = 1719× 3.5848 = 102.7 Hz (18) fep  60  3.5848  102.7 Hz (18) 60 Table 1. Coefficient of drive end bearing: 6205-2RS JEM SKF, deep groove ball bearing. Table 1. Coefficient of drive end bearing: 6205‐2RS JEM SKF, deep groove ball bearing.  Inner Ring Inner Ring  5.4152

5.4152 

Outer Ring Outer Ring 3.5848 3.5848 

Cage Train Rolling Element Cage Train Rolling Element  4.7135 0.39828 0.39828 4.7135 

The time time  domain  waveform  of  the  experimental  vibration  FFT  spectrum  are  The domain waveform of the experimental vibration signalsignal  and itsand  FFTits  spectrum are shown shown in Figure 6, from which the fault characteristic frequency cannot be identified. The proposed  in Figure 6, from which the fault characteristic frequency cannot be identified. The proposed method method was applied to this vibration signal.  was applied to this vibration signal. As show in Figure 6a, the vibration signal presented a periodic change with the increasing of  As show in Figure 6a, the vibration signal presented a periodic change with the increasing of experiment times. Spectrum analysis has been made, and the result is shown in Figure 6b. However,  experiment times. Spectrum analysis has been made, and the result is shown in Figure 6b. However, it is difficult to find out any obvious fault information, for the feature with gear fault information is  it is difficult to find out any obvious fault information, for the feature with gear fault information is drawn in the background vibration signals.  drawn in the background vibration signals.

Appl. Sci. 2017, 7, 128 Appl. Sci. 2017, 7, 128   

10 of 15 10 of 15 

  Figure 6. Experimental bearing vibration signal and its spectrum. (a) Experimental bearing vibration  Figure 6. Experimental bearing vibration signal and its spectrum. (a) Experimental bearing vibration signal; (b) spectrum of the bearing vibration signal.  signal; (b) spectrum of the bearing vibration signal.

The  proposed  method  in  this  article  is  then  introduced  to  analyze  the  vibration  signal.  The proposed method in this article is then introduced to analyze the vibration signal. According According to the resample criterion presented in Section 3.2, if we subtract 12‐times the maximum  to the resample criterion presented in Section 3.2, if we subtract 12-times the maximum frequency from frequency from sampling frequency, the value of the result was bigger than the maximum frequency.  sampling the value ofbe  thetaken  resultto improve  was biggerthe accuracy and computational  than the maximum frequency. Therefore, efficiency the of  Therefore, frequency, the  resample should  resample should be taken to improve the accuracy and computational efficiency of EEMD. EEMD.  fs f r f= 48000 48000−  12 ×3293 8484 Hz  3293 Hz f e =fe fs − 3293= 8484 Hz ≥ 3293 Hz r

(19) (19)

The resample was first applied on the vibration signal with a frequency of 39,516 Hz. The first  The resample was first applied on the vibration signal with a frequency of 39,516 Hz. The first eight IMFs of the resample signal are shown in Figure 7a. The IMF1 was selected for further analysis  eight IMFs of the resample signal are shown in Figure 7a. The IMF1 was selected for further analysis because itit had had  highest  kurtosis  compared  with  the IMFs. other  IMFs.  The  demodulation  because thethe  highest kurtosis valuevalue  compared with the other The demodulation spectrum spectrum obtained from applying the HSD on IMF1 is illustrated in Figure 7b, which shows that the  obtained from applying the HSD on IMF1 is illustrated in Figure 7b, which shows that the identified identified  matched frequency  the  calculated  fep side-bands’ 102.7 Hz .  frequencies The  side‐bands’  frequency thematched  calculated fault frequencyfault  f ep =frequency  102.7 Hz. The were also clearly identified. frequencies were also clearly identified. 

(a)  Figure 7. Cont.

 

Appl. Sci. 2017, 7, 128

11 of 15

Appl. Sci. 2017, 7, 128    Appl. Sci. 2017, 7, 128   

11 of 15  11 of 15 

1.4 1.4 1.2 1.2

Amplitude Amplitude

1 1 0.8 0.8

fr fr

fep fep fep-fr fep-fr

0.6 0.6

X: 102.9 Y: 102.9 0.8202 X: Y: 0.8202

fep+fr fep+fr

0.4 0.4

2*fep-fr 2*fep-fr

2*fep+fr 2*fep+fr

0.2 0.2 0 00 0

2*fep 2*fep

50 50

100 100

150 150

200 250 300 350 400 450 500 200Frequency 250 (Hz)300 350 400 450 500   Frequency (Hz)   (b)  (b)  Figure  7.  The  decomposition  results  of  vibration  with  improved  EEMD  and  the  spectrum  of  the  Figure 7. The decomposition  decomposition results  results of  of vibration  vibration with  with improved  improved EEMD  EEMD and  and the  the spectrum  spectrum of the Figure  7.  The  of  the  demodulated  signal.  (a)  The  decomposition  results  of  vibration  with  improved  EEMD;  (b)  the  demodulated signal. The decomposition results of vibration with improved EEMD; (b) the spectrum demodulated  signal. (a)(a)  The  decomposition  results  of  vibration  with  improved  EEMD;  (b)  the  spectrum of the demodulated signal.  of the demodulated signal. spectrum of the demodulated signal. 

4.2. Gear Experimental Evaluation  4.2. Gear Experimental Evaluation 4.2. Gear Experimental Evaluation  A set of gear fault vibration signals was kindly provided by the Reliability Research Lab in the  A set of gear fault vibration signals was kindly provided by the Reliability Research Lab in A set of gear fault vibration signals was kindly provided by the Reliability Research Lab in the  Department  of  Mechanical  Engineering  at  the  University  of  Alberta  [25].  The  diagram  of  the  the Department of Mechanical Engineering the Universityof ofAlberta  Alberta[25].  [25]. The  Thediagram  diagram of  of the Department  of  Mechanical  Engineering  at  at the  University  the  experimental  system  is  displayed  in  Figure  8  [26,27].  The  system  included  a  gearbox,  a  3‐hp  AC  experimental system inin  Figure 8 [26,27]. TheThe  system included a gearbox, a 3-hpa AC motor AC  experimental  system isis displayed displayed  Figure  8  [26,27].  system  included  a  gearbox,  3‐hp  motor  for  driving  the  gearbox  and  a  magnetic  brake  for  loading.  The  motor  rotating  speed  was  for driving the gearbox and a magnetic brake forbrake  loading. motorThe  rotating speed was speed  controlled motor  for  driving  the  gearbox  and  a  magnetic  for The loading.  motor  rotating  was  controlled by a speed controller, which allowed the tested gear to operate under various speeds. The  by a speed controller, which allowed the tested gear to operate under various speeds. The load was controlled by a speed controller, which allowed the tested gear to operate under various speeds. The  load  was  provided  by  the  magnetic  brake  connected  to  the  output  shaft,  and  the  torque  could  be  provided the magnetic connected the output and theshaft,  torque could be adjusted bybe  a load  was by provided  by  the brake magnetic  brake to connected  to shaft, the  output  and  the  torque  could  adjusted by a brake controller. As shown in Figure 8b, the gearbox was driven by the motor through  brake controller. As shown in Figure 8b, the gearbox was driven by the motor through a timing belt, adjusted by a brake controller. As shown in Figure 8b, the gearbox was driven by the motor through  a timing belt, and there were three shafts inside the gearbox, which were mounted to the gearbox  and there were three shafts inside the gearbox, which were mounted to the gearbox housing by rolling a timing belt, and there were three shafts inside the gearbox, which were mounted to the gearbox  housing by rolling element bearings. Gear 1 on Shaft 1 has 48 teeth and meshes with Gear 2 with 16  element bearings. Gear 1 on Shaft 1 has 48 teeth and meshes with Gear 2 with 16 teeth. Gear 3 on Shaft housing by rolling element bearings. Gear 1 on Shaft 1 has 48 teeth and meshes with Gear 2 with 16  teeth. Gear 3 on Shaft 2 has 24 teeth and meshes with Gear 4, which was on the output shaft (Shaft 3)  2 has 24 teeth and meshes with Gear 4, which was on the output shaft (Shaft 3) and has 40 teeth. Gear teeth. Gear 3 on Shaft 2 has 24 teeth and meshes with Gear 4, which was on the output shaft (Shaft 3)  and  has  40  teeth.  Gear  3  was  the  tested  gear.  Gears  with  different  levels  of  crack  faults  were  3 washas  the40  tested gear. Gears withthe  different crackwith  faults were simulated the experimental and  teeth.  Gear  3  was  tested levels gear.  of Gears  different  levels  of incrack  faults  were  simulated in the experimental system. As shown in Figure 9a, α was the crack angle,  a   one half of  system. As shown in Figure 9a, α was the crack angle, a one half of the chordal tooth thickness and b a   one half of  simulated in the experimental system. As shown in Figure 9a, α was the crack angle,  the chordal tooth thickness and  b   the face width. The crack thickness was 0.4 mm in the experiment  the face width. The crack thickness was 0.4 mm in the experiment based on the measurement of the b   the face width. The crack thickness was 0.4 mm in the experiment  the chordal tooth thickness and  based on the measurement of the thinnest knife of the machine tools in the lab.  thinnest knife of the machine tools in the lab. based on the measurement of the thinnest knife of the machine tools in the lab. 

(a)  (a)  Figure 8. Cont.

   

Appl. Sci. 2017, 7, 128 Appl. Sci. 2017, 7, 128    Appl. Sci. 2017, 7, 128   

12 of 15 12 of 15  12 of 15 

 

(b)  (b)  Figure 8. Gear test rig. (a) Experimental system; (b) diagram of the system.  Figure 8. Gear test rig. (a) Experimental system; (b) diagram of the system. Figure 8. Gear test rig. (a) Experimental system; (b) diagram of the system. 

(a) (a)

 

(b)  (b) 

Figure  9.  Gear  crack  angle,  face  width  and  chordal  tooth  thickness  and  experiment  fault  gear.    Figure 9.9.  Gear  crack  angle,  and  chordal  tooth  thickness  and  experiment  gear.    Figure Gear crack angle, face face  widthwidth  and chordal tooth thickness and experiment fault gear.fault  (a) Crack (a) Crack angle, face width and chordal tooth thickness of a gear; (b) 75% level crack in the gear.  (a) Crack angle, face width and chordal tooth thickness of a gear; (b) 75% level crack in the gear.  angle, face width and chordal tooth thickness of a gear; (b) 75% level crack in the gear.

In this study, we employed the gear with 75% crack level as shown in Figure 9b. The vibration  In this study, we employed the gear with 75% crack level as shown in Figure 9b. The vibration  f s in12 , 800 Hz .  We  used  two  was  In measured  RPM the with  this study,at  we2200  employed gearthe  withsampling  75% crackfrequency  level as shown Figure 9b. The vibration was 800 Hz .  We  used  two  was  measured  at  2200  RPM  with  the  sampling  frequency  f s  12, measured at 2200 RPM with the sampling frequency f = 12, 800 Hz. We used two acceleration sensors acceleration  sensors  produced  by  PCB  Electronics s with  Model  Number  352C67.  The  meshing  acceleration  sensors  produced  PCB Number Electronics  with  Model  Number  352C67.  meshing  produced by PCB Electronics withby  Model 352C67. The meshing frequencies are The  summarized frequencies are summarized in Table 2 [26]. From the configuration of the gearbox system, the fault  frequencies are summarized in Table 2 [26]. From the configuration of the gearbox system, the fault  in Table 2 [26]. From the configuration of the gearbox system, the fault characteristic frequency was characteristic frequency was equal to the rotating frequency of Shaft 2.  characteristic frequency was equal to the rotating frequency of Shaft 2.  equal to the rotating frequency of Shaft 2. feq  f2  26.1 Hz (20) feq  f2  26.1 Hz (20) f eq = f 2 = 26.1 Hz (20) Table 2. Motor speed and characteristic frequencies of the gearbox.  Table 2. Motor speed and characteristic frequencies of the gearbox.  Table 2. Motor speed and characteristic frequencies Motor Speed (RPM)  f1 (Hz)  f12 (Hz) f2 (Hz) of thef34gearbox. (Hz) 

Motor Speed (RPM)  f1 (Hz)  2200  8.73  Motor Speed 2200  (RPM) f 1 (Hz)8.73 

f12 (Hz) 418.89  418.89  f 12 (Hz)

f2 (Hz) 26.19  f 2 26.19  (Hz)

f34 (Hz)  628.56  f628.56  34 (Hz)

f3 (Hz)  f3 (Hz)  15.72  15.72  f 3 (Hz)

Note: f1, f2 and f3 are the rotating frequencies of Shaft 1, Shaft 2 and Shaft 3, respectively. f12 and f34 are  Note: f 1, f2 and f3 are the rotating frequencies of Shaft 1, Shaft 2 and Shaft 3, respectively. f 12 and f 34 are  2200 8.73 418.89 26.19 628.56 15.72 the meshing frequencies of Gears 1 and 2 and Gears 3 and 4, respectively.  the meshing frequencies of Gears 1 and 2 and Gears 3 and 4, respectively.  Note: f , f and f are the rotating frequencies of Shaft 1, Shaft 2 and Shaft 3, respectively. f and f are the 1

2

3

meshing frequencies of Gears 1 and 2 and Gears 3 and 4, respectively.

12

34

The time domain waveform of the experimental vibration signal and its spectrum are illustrated  The time domain waveform of the experimental vibration signal and its spectrum are illustrated  in Figure 10, from which the fault characteristic frequency cannot be identified. The vibration signal  in Figure 10, from which the fault characteristic frequency cannot be identified. The vibration signal  The time domain waveform of the experimental vibration signal and its spectrum are illustrated was analyzed with the proposed method.  was analyzed with the proposed method.  in Figure 10, from which the fault characteristic frequency cannot be identified. The vibration signal was analyzed with the proposed method.

Appl. Sci. 2017, 7, 128

13 of 15

Appl. Sci. 2017, 7, 128   

13 of 15 

Appl. Sci. 2017, 7, 128   

13 of 15 

    Figure  10.  Gear  experimental  vibration  signal  and  its  spectrum.  (a)  Gear  experimental  vibration 

Figure 10. Gear experimental vibration signal and its spectrum. (a) Gear experimental vibration signal; Figure  10.  Gear  experimental  vibration  signal  and  its  spectrum.  (a)  Gear  experimental  vibration  signal; (b) spectrum of gear vibration signal.  (b) spectrum of gear vibration signal. signal; (b) spectrum of gear vibration signal. 

IMF8 IMF6 IMF3 IMF8 IMF6 IMF3 IMF4 IMF7 IMF5 IMF4 IMF2 IMF1 IMF7 IMF5 IMF2 IMF1

According  to  the  resample  criterion  presented in  Section 3.2,  subtract 12‐times the  maximum  According the resample criterion in Section 3.2,result  subtract 12-times the maximum According  to  the  resample  criterion presented presented in  Section 3.2,  subtract 12‐times the  frequency  with to the  sampling  frequency,  and  the  value  of  the  is  less  than  the  maximum  frequency with the sampling frequency, and the value of the result is less than the maximum frequency. frequency  with  the  sampling  frequency,  and  the  value  of  the  result  is  less  than  the  maximum  frequency. Therefore, the resample algorithm is unable to be carried out.  Therefore, the resample algorithm is unable to be carried out. frequency. Therefore, the resample algorithm is unable to be carried out.  fe  fs  fr  12800  12  1667  7204 Hz  1667 Hz (21)  12800  12  1667   7204 Hz  1667 Hz (21) f e =fe fs −fs  f r f= 12800 − 12 × 1667 = − 7204 Hz ≤ 1667 Hz (21) r The  results  of  the  decomposition  of  the  vibration  signal  directly  with  EEMD  are  shown  in  The  results  of  the the was  decomposition  of  the  vibration vibration  signal  directly  with  EEMD kurtosis  are  shown shown  in  Figure  11a.  The  IMF2  selected  for of further  analysis  signal because  it  had with the  biggest  value  The results of decomposition the directly EEMD are in Figure  11a. 11a.  The  had  the the  biggest biggest  kurtosis kurtosis  value value  compared with the other IMFs. HSD was applied on IMF2, and the obtained demodulation spectrum  Figure The IMF2  IMF2 was  was selected  selected for  for further  further analysis  analysis because  because it  it had compared with the other IMFs. HSD was applied on IMF2, and the obtained demodulation spectrum  is shown in Figure 11b. It was found that the identified frequency component matched the gear fault  compared with the other IMFs. HSD was applied on IMF2, and the obtained demodulation spectrum is shown in Figure 11b. It was found that the identified frequency component matched the gear fault  characteristic frequency   26.1 Hz   accurately.  is shown in Figure 11b. It fwas found that the identified frequency component matched the gear fault eq characteristic frequency  f  26.1 Hz accurately.  characteristic frequency f eqeq = 26.1 Hz  accurately. 0.1 0 -0.1 0.10 0 -0.1 0.1 0 0 -0.1 0.10 0 -0.1 0.050 0 -0.05 0.050 0 -0.05 0.050 0 -0.05 0.050 0 -0.05 0.010 0 -0.01 0.010 0 x 10-3 -0.01 5 -3 00 -55 x 10 0 0 -5 0.01 00 -0.01 0.010 0 x 10-3 -0.01 5 0 0x 10-3 -55 00 -5 0

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

0.6 0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.1

0.2

0.4

0.5

0.6

Time 0.3 (s)

(a)  Time (s) (a)  Figure 11. Cont.

   

Appl. Sci. 2017, 7, 128 Appl. Sci. 2017, 7, 128   

14 of 15 14 of 15 

(b) 

 

Figure  11.  The  Figure 11. The decomposition  decomposition results  results of  of vibration  vibration with  with improved  improved EEMD  EEMD and  and spectrum  spectrum of  of the  the demodulated  signal.  (a)  The  decomposition  results  of  vibration  with  improved  EEMD;  (b)  the  demodulated signal. (a) The decomposition results of vibration with improved EEMD; (b) the spectrum spectrum of the demodulated signal.  of the demodulated signal.

5. Discussion and Conclusions  5. Discussion and Conclusions In order to detect gearbox faults of wind turbines as early as possible, we proposed a novel fault  In order to detect gearbox faults of wind turbines as early as possible, we proposed a novel fault diagnosis method based on improved EEMD and HSD. Firstly, the frequency components of the raw  diagnosis method based on improved EEMD and HSD. Firstly, the frequency components of the raw vibration signal were calculated to determine whether a resample was needed. In order to increase  vibration signal were calculated to determine whether a resample was needed. In order to increase the  accuracy  of  EEMD,  a  resampling  criterion  for  the  raw  signal  was  developed.  Secondly,  a  raw  the accuracy of EEMD, a resampling criterion for the raw signal was developed. Secondly, a raw signal or resample signal was decomposed into several IMFs using improved EEMD. Then, using  signal or resample signal was decomposed into several IMFs using improved EEMD. Then, using the the  IMF  with  the  highest  kurtosis  value,  the  fault  feature  was  selected  for  demodulation  by  the  IMF with the highest kurtosis value, the fault feature was selected for demodulation by the Hilbert Hilbert  square  demodulation  technique.  Finally  spectrum  analysis  was  applied  and  fault  square demodulation technique. Finally spectrum analysis was applied and fault information obtained. information  obtained.  Experimental  studies  have  demonstrated  the  effectiveness  of  the  proposed  Experimental studies have demonstrated the effectiveness of the proposed method in fault diagnosis method in fault diagnosis for the gear and bearing of the wind turbine gearbox.  for the gear and bearing of the wind turbine gearbox. Acknowledgments:  This work work  is  supported  by National the  National  Science  Foundation  of  China  Acknowledgments: This is supported by the NaturalNatural  Science Foundation of China (Grant No.   (Grant  No.  51475432),  the  Zhejiang  Provincial  National  Natural  Science  Foundation  of  and China  51475432), the Zhejiang Provincial National Natural Science Foundation of China (Grant No. 2013C24005) the   Key Program for International Projects China (GrantS&T  No. 2015DFA71400). (Grant  No.  2013C24005)  and S&T the Cooperation Key  Program  for  of International  Cooperation  Projects  of  China    (Grant No. 2015DFA71400).  Author Contributions: H.C. and W.C. designed experiment verification and validation schemes. P.C. and J.W. gathered experimental data and analyzed experimental results. P.C., H.C., C.W. and J.L. Studied the signal Author Contributions: H.C. and W.C. designed experiment verification and validation schemes. P.C. and J.W.  processing method. H.C. and P.C. wrote the manuscript. gathered  experimental  data  and  analyzed  experimental  results.  P.C.,  H.C.,  C.W.  and  J.L.  Studied  the  signal  Conflicts of Interest: The authors declare no conflict of interest. processing method. H.C. and P.C. wrote the manuscript. 

Conflicts of Interest: The authors declare no conflict of interest.  References Song, G.; Li, H.; Gajic, B.; Zhou, W.; Chen, P.; Gu, H. Wind turbine blade health monitoring with 1. References 

1. 2. 2. 3.

3. 4. 4. 5.

piezoceramic-based wireless sensor network. Int. J. Smart Nano Mater. 2013, 4, 150–166. [CrossRef] Song,  G.;  Li, I.;H.;  Gajic, G.; B.; Staszewski, Zhou,  W.; W.J.; Chen,  P.;  Gu,  H.  Wind K.turbine  blade  health  monitoring  with  Antoniadou, Manson, Barszcz, T.; Worden, A time-frequency analysis approach for piezoceramic‐based wireless sensor network. Int. J. Smart Nano Mater. 2013, 4, 150–166.  condition monitoring of a wind turbine gearbox under varying load conditions. Mech. Syst. Signal Process. Antoniadou, I.; Manson, G.; Staszewski, W.J.; Barszcz, T.; Worden, K. A time‐frequency analysis approach  2015, 64, 188–216. [CrossRef] for  condition  monitoring  wind  turbine  gearbox mode under  varying  load  and conditions.  Mech.  Syst.  Signal  Zheng, J.; Cheng, J.; Yang,of  Y.a Generalized empirical decomposition its applications to rolling Process. 2015, 64, 188–216.  element bearing fault diagnosis. Mech. Syst. Signal Process. 2013, 40, 136–153. [CrossRef] Zheng, J.; Cheng, J.; Yang, Y. Generalized empirical mode decomposition and its applications to rolling  Lei, Y.G.; He, Z.J.; Yanyang, Z.; Chen, X. New clustering algorithm-based fault diagnosis using compensation element bearing fault diagnosis. Mech. Syst. Signal Process. 2013, 40, 136–153.  distance evaluation technique. Mech. Syst. Signal Process. 2008, 22, 419–435. [CrossRef] Lei,  Y.G.;  He,  Z.J.;  Yanyang,  Z.;  Chen,  X.  New  clustering  algorithm‐based  fault  diagnosis  using  compensation distance evaluation technique. Mech. Syst. Signal Process. 2008, 22, 419–435.  Nikolaou, N.; Antoniadis, I. Rolling element bearing fault diagnosis using wavelet packets. NDT & E Int.  2002, 35, 197–205. 

Appl. Sci. 2017, 7, 128

5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.

18.

19. 20. 21. 22.

23. 24. 25. 26. 27.

15 of 15

Nikolaou, N.; Antoniadis, I. Rolling element bearing fault diagnosis using wavelet packets. NDT & E Int. 2002, 35, 197–205. Zhang, L.; Wang, C.; Song, G. Health Status Monitoring of Cuplock Scaffold Joint Connection Based on Wavelet Packet Analysis. Shock Vib. 2015, 2015, 1–7. [CrossRef] Wang, Z.; Lu, C.; Wang, Z.; Ma, J. Health assessment of rotary machinery based on integrated feature selection and Gaussian mixed model. J. Vibroeng. 2014, 16, 1753–1762. Lu, C.; Hu, J.; Liu, H. Application of EMD-AR and MTS for hydraulic pump fault diagnosis. J. Vibroeng. 2013, 15, 761–772. Lu, C.; Yuan, H.; Tang, Y. Bearing performance degradation assessment and prediction based on EMD and PCA-SOM. J. Vibroeng. 2014, 16, 1387–1396. He, Q.; Feng, Z.; Kong, F. Detection of signal transients using independent component analysis and its application in gearbox condition monitoring. Mech. Syst. Signal Process. 2007, 21, 2056–2071. [CrossRef] Wang, J.; Gao, R.X.; Yan, R.Q.; Wang, L. An integrative computational method for gearbox diagnosis. Procedia CIRP 2013, 12, 133–138. [CrossRef] Koizumi, T.; Tsujiuchi, N.; Matsumura, Y. Diagnosis with the correlation integral in time domain. Mech. Syst. Signal Process. 2000, 14, 1003–1010. [CrossRef] Liang, X.H.; Zuo, M.J.; Hoseini, M.R. Vibration signal modeling of a planetary gear set for tooth crack detection. Eng. Fail. Anal. 2015, 48, 185–200. [CrossRef] Amirat, Y.; Choqueuse, V.; Benbouzid, M. EEMD-based wind turbine bearing failure detection using the generator stator current homopolar component. Mech. Syst. Signal Process. 2013, 41, 667–678. [CrossRef] Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–14. [CrossRef] Zhang, J.; Yan, R.; Gao, R.; Feng, Z. Performance enhancement of Ensemble Empirical Mode Decomposition. Mech. Syst. Signal Process. 2010, 24, 2104–2123. [CrossRef] Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis. R. Soc. Lond. Proc. 1998, 454, 903–995. [CrossRef] Stevenson, N.; Mesbah, M.; Boashash, B. A sampling limit for the empirical mode decomposition. In Proceedings of the 8th International Symposium on Signal Processing and its Applications, Sydney, Australia, 28–31 August 2005; pp. 647–650. Wang, H.; Chen, J.; Dong, G. Feature extraction of rolling bearing’s early weak fault based on EEMD and tunable Q-factor wavelet transform. Mech. Syst. Signal Process. 2014, 48, 103–119. [CrossRef] Stack, J.R.; Harley, R.G.; Habetler, T.G. An amplitude modulation detector for fault diagnosis in rolling element bearings. IEEE Trans. Ind. Electron. 2004, 51, 1097–1102. [CrossRef] Zhang, X.; Liang, Y.; Zhou, J. A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM. Measurement 2015, 69, 164–179. [CrossRef] Yu, X.; Ding, E.; Chen, C.; Liu, X.; Li, L. A Novel Characteristic Frequency Bands Extraction Method for Automatic Bearing Fault Diagnosis Based on Hilbert Huang Transform. Sensors 2015, 15, 27869–27893. [CrossRef] [PubMed] Bedrosian, E. A product theorem for Hilbert transform. Proc. IEEE 1963, 51, 868–869. [CrossRef] Case Western Reserve University Bearing Data Center Website. Available online: http://csegroups.case. edu/bearingdatacenter/home (accessed on 25 December 2015). Reliability Research Lab. Available online: http://www.mece.ualberta.ca/groups/reliability/index.html (accessed on 28 December 2015). Lei, Y.; Zuo, M.J. Gear crack level identification based on weighted K nearest neighbor classification algorithm. Mech. Syst. Signal Process. 2009, 23, 1535–1547. [CrossRef] Lei, Y.; Zuo, M.J.; He, Z.; Zi, Y. A multidimensional hybrid intelligent method for gear fault diagnosis. Expert Syst. Appl. 2010, 37, 1419–1430. [CrossRef] © 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).