zeta converter applied in power

22 downloads 0 Views 256KB Size Report
ZETA CONVERTER APPLIED IN POWER. FACTOR CORRECTION. ADRIANO PÉRES. (Oral Presenter). DENIZAR CRUZ MARTINS. IVO BARBI. POWER ...
ZETA CONVERTER APPLIED IN POWER FACTOR CORRECTION

ADRIANO PÉRES (Oral Presenter)

DENIZAR CRUZ MARTINS IVO BARBI

POWER ELECTRONICS RESEARCH GROUP FEDERAL UNIVERSITY OF SANTA CATARINA FLORINÓPOLIS - SC BRAZIL

1 - INTRODUCTION

PRIMARY OBJECT:

ANALYSIS OF THE ZETA CONVERTER OPERATING IN DISCONTINUOUS CONDUCTION MODE FOR POWER FACTOR CORRECTION.

THE MAIN ATTRACTIVE OF ZETA CONVERTER IS THAT IT IS A NATURALLY ISOLATED STRUCTURE, WHICH ALLOW A REGULATED OUTPUT VOLTAGE WITH ONLY ONE POWER PROCESSING STAGE.

WITH THE EXCEPTION OF THE ZETA CONVERTER ALL OTHERS (BUCK, BOOST, BUCK-BOOST, CUK AND SEPIC ) HAVE BEEN EMPLOYED TO CORRECT THE POWER FACTOR OF POWER SUPPLIES. HOWEVER THEY HAVE THEIR INTRINSIC LIMITATIONS:

BOOST: IS NOT NATURALLY ISOLATED OPERATES ONLY AS A STEP-UP VOLTAGE IT IS NOT CAPABLE OF PROTECTING ITSELF AGAINST A LOAD OVERCURRENT OR SHORT-CIRCUIT

CUK AND SEPIC: ARE NATURALLY ISOLATED AND OPERATE AS STEP-DOWN AND STEP-UP VOLTAGE, HOWEVER: DO NOT PROTECT THEMSELVES AGAINST OVERLOAD AN ADDITIONAL CIRCUIT IS NEEDED TO LIMIT THE INRUSH CURRENT

BUCK: IS CAPABLE TO LIMIT THE INRUSH CURRENT AND PROTECTING AGAINST OVERLOAD, HOWEVER: FOR POWER FACTOR APPLICATION, THE DC OUTPUT VOLTAGE IS REFLECTED TO THE PRIMARY SIDE OF THE TRANSFORMER BLOCKING THE RECTIFIER DIODES HAS NO FUTURE IN POWER FACTOR CORRECTION APPLICATIONS.

BUCK-BOOST IT IS THE ONLY CONVERTER CAPABLE OF SATISFYING ALL THE MENTIONED SPECIFICATIONS SIMULTANEOUSLY.

ZETA HAS PROPERTIES SIMILAR TO THE FLYBACK CONVERTER IN SOME PARTICULAR APPLICATIONS IT IS MOST ADVANTAGEOUS OVER THE OTHER DC-DC CONVERTERS.

2 - PROPOSED CIRCUIT S1 D2

Vin

Lo

C1

D4

Co

D1 D3

N1

D5

Ro

N2

Fig. 1 - Proposed Circuit.

OPERATION STAGES

i S1

- VC1 + S1

iLo Lo

C1

+ Vin

iin

iLm

D1

Lm

Co

Ro

Vo -

a)First S tage (t0,t1)

S1

- VC1 +

i S1

iLo Lo

C1

+ Vin

iin

iLm

D1

Lm

Co

Ro

i D1

Vo -

b)S econd S tage (t1,t2)

S1

- Vc1 +

ilo Lo

i S1

C1 +

Vin

iin

iLm

Lm

D1

Co

Ro

Vo -

c)Third S tage (t2,t3)

Fig. 3 - Operation Stages.

THEORETICAL WAVEFORMS

Fig. 4 - The Main Waveforms for a switching period.

Vin Iin

IS1

VS1

VD1

iLm

iLo

Fig. 5 - The Main Waveforms for a line period.

3 - MATHEMATICAL ANALYSIS 3.1 - LINE CURRENT THE INPUT CURRENT INCREASES LINEARLY ACCORDING THE FOLLOWING EQUATION:

Vp  sin( wt ) iin ( t )  t L

(4)

IF WE CONSIDER AN INPUT FILTER TO ELIMINATE THE HIGH FREQUENCY HARMONICS, THUS:

iin ( t ) 

Vp  D sin( wt ) L  fs

(5)

SO, THE INPUT CURRENT IS A SINUSOIDAL CURVE WITH UNITY POWER FACTOR.

3.3 - OUTPUT CHARACTERISTIC (G)

G

Vo D  Vp 2

Ro L  fs

(16)

Fig. 8 - Normalized output characteristic.

WHERE

x

Ro L  fs

4 - SIMPLIFIED DESIGN PROCEDURE AND EXAMPLE 4.1 - SPECIFICATIONS

- Po = 200W - Vo = 72V - vin = 311.sin(w.t)  10% - fs = 100kHz 4.2 - CALCULATION

Io 

Po 200   2 .78 A Vo 72

Vo a  3 . 89 Vo WHERE SIDE)

VO'=280V

(TURNS RATIO)

(OUTPUT VOLTAGE REFERRED TO THE PRIMARY

THE RELATION OF THE VOLTAGES ARE:

Vpmax  342V ;  max 

Vpmax  1 . 22 Vo

Vpnom  311V ;  nom  1 . 11 Vpmin  280V ;  min  1 .0

CRITICAL DUTY CYCLE AND CRITICAL ZETA INDUCTANCE

Dc 

1  0 . 45 1   max

 min  Vpmin  Dc 2 Lc   198 H 4  Io  fs CHOOSING THE EQUIVALENT ZETA INDUCTANCE EQUAL TO 75% OF THE LC, LM=LO' AND KEEPING 2% OF RIPPLE IN THE OUTPUT VOLTAGE, WE OBTAIN:

Lm  Lo  290 H Lo Lo  2  19 . 2 H a

Co  247 F

Co  Co  a  3800 F 2

5 - EXPERIMENTAL RESULTS

Lo D2

C1

D3

Cf1

M1

Dg

T1

Rgd

vi

Lf

D1

Cf2

Dgd

Co

Ro

Cgd D4

D5

Rg

Cg

Fig. 10 - Implemented converter.

320 Amplitude

Vin

240 160 Iin*200

80 0 -80 -160 -240 -320 0.0

4.0

8.0

12.0

Time (ms)

Fig. 11 - Line current and voltage.

16.0

20.0

100

100

Amplitude(%)

Amplitude(%)

80

80

TDH=3.52% (voltage)

60

TDH=5.94% (current) cos  =0.9979 FP=0.9961

60

40

40

20

20

0

0

0

4

8

12

16

20

24

28 32 36 Harmonic (n)

40

0

4

8

12

16

20

24

28 32 36 Harmonic (n)

Fig. 12 - TDH of the input voltage and current.

(V) 72.8 VCo

72.0 71.2 (V) 72.8

VC1

72.0 71.2 70.4 0.0

8.0

16.0

24.0

32.0 40.0 Tempo (ms)

Fig. 13 - Ripple of the voltage in C1 and Co.

40

(V),(A) 943 786 VS1

629 IS1*100

472 314 157 0 -157 0.0

5.0

10.0 Tempo (ms)

15.0

20.0

Fig. 14 - Switch voltage and current. (A) 30

iD1

25 20 iS1*3

15 10 5 0 -5 0.0

5.0

10.0

15.0

20.0 Tempo(m s)

Fig. 15 - D1 and S1 current. 100

% 80 60 40 20 0

0

50

100

150

200Po

Fig. 16 - Efficiency curve. G 0,6 0,5 0,4 0,3 - - - Experimental

0,2 0,1 0,05

___ 0,1

0,15

0,2

0,25

Theoretical 0,3

D

Fig. 17 - Output characteristic.

5 - CONCLUSIONS BASED ON THE THEORETICAL AND EXPERIMENTAL RESULTS WE CAN DRAW THE CONCLUSIONS AS FOLLOWS: -IN DISCONTINUOUS CURRENT MODE, DRIVEN BY A STANDARD PWM INTEGRATED CIRCUIT, THE ZETA CONVERTER DRAWN A LINE CURRENT PROPORTIONAL TO THE INPUT VOLTAGE IN A MANNER SIMILAR TO THE FLYBACK CONVERTER, WITH NO HARMONIC CURRENT NEITHER PHASE DISPLACEMENT. -THE OPERATION IN THE CONTINUOUS CURRENT MODE IS ALSO POSSIBLE, PROVIDED THAT ACTIVE POWER FACTOR CORRECTION BE IMPLEMENTED. -AS THE FLYBACK CONVERTER, THE ZETA CONVERTER PROVIDES: ISOLATION, HIGH POWER FACTOR, OVERLOAD AND SHORT-CIRCUIT PROTECTION, LIMIT OF THE INRUSH CURRENT AND REGULATION OF THE OUTPUT VOLTAGE USING ONLY ONE ACTIVE SWITCH.

References 1. H. Endo, T. Yamashita and T. Sugiura "A High-Power-FactorBuck Converter", IEEE PESC Records, pp.1071 -1076 1993 2. N. Mohan, T. M. Undeland and R. J. Ferrara "Sinusoidal Line Rectification with a 100kHz B-SIT Step-up Converter", IEEE APEC Records, pp.92 -98 1984. 3. M. J. Kocher and R. L. Steigerwald "An AC to DC Converter With High Power Quality Input Waveforms", IEEE PESC Cnference Records, pp.63 -75 1982. 4. H Le-Huy , J. Ρ. Ferriewx and E. Toutain "An AC-DC Converter With Low-Harmonics Input Current", Second European Conference on Power Electronics and applications, pp.1201 -1207 1987. 5. C. A. Canesin and I. Barbi "A Unity Power Factor Multiple Isolated Outputs Switching Mode Power Suply Using a Simple Switch", IEEE APEC Records, pp.430 -436 1991.